Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415788

RESUMO

The primary cilium is an antenna-like projection from the plasma membrane that serves as a sensor of the extracellular environment and a crucial signaling hub. Primary cilia are generated in most mammalian cells, and their physiological significance is highlighted by the large number of severe developmental disorders or ciliopathies that occur when primary ciliogenesis is impaired. Primary ciliogenesis is a tightly regulated process, and a central early regulatory step is the removal of a key mother centriole capping protein, CP110 (also known as CCP110). This uncapping allows vesicles docked on the distal appendages of the mother centriole to fuse to form a ciliary vesicle, which is bent into a ciliary sheath as the microtubule-based axoneme grows and extends from the mother centriole. When the mother centriole migrates toward the plasma membrane, the ciliary sheath fuses with the plasma membrane to form the primary cilium. In this Review, we outline key early steps of primary ciliogenesis, focusing on several novel mechanisms for removal of CP110. We also highlight examples of ciliopathies caused by genetic variants that encode key proteins involved in the early steps of ciliogenesis.


Assuntos
Axonema , Ciliopatias , Animais , Membrana Celular , Centríolos , Ciliopatias/genética , Vesículas Citoplasmáticas , Mamíferos
2.
Orphanet J Rare Dis ; 19(1): 55, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336713

RESUMO

BACKGROUND: Rare diseases affect approximately 400 million people worldwide. Many of them suffer from delayed diagnosis. Among them, NPHP1-related renal ciliopathies need to be diagnosed as early as possible as potential treatments have been recently investigated with promising results. Our objective was to develop a supervised machine learning pipeline for the detection of NPHP1 ciliopathy patients from a large number of nephrology patients using electronic health records (EHRs). METHODS AND RESULTS: We designed a pipeline combining a phenotyping module re-using unstructured EHR data, a semantic similarity module to address the phenotype dependence, a feature selection step to deal with high dimensionality, an undersampling step to address the class imbalance, and a classification step with multiple train-test split for the small number of rare cases. The pipeline was applied to thirty NPHP1 patients and 7231 controls and achieved good performances (sensitivity 86% with specificity 90%). A qualitative review of the EHRs of 40 misclassified controls showed that 25% had phenotypes belonging to the ciliopathy spectrum, which demonstrates the ability of our system to detect patients with similar conditions. CONCLUSIONS: Our pipeline reached very encouraging performance scores for pre-diagnosing ciliopathy patients. The identified patients could then undergo genetic testing. The same data-driven approach can be adapted to other rare diseases facing underdiagnosis challenges.


Assuntos
Ciliopatias , Doenças Raras , Humanos , Registros Eletrônicos de Saúde , Semântica , Aprendizado de Máquina Supervisionado , Ciliopatias/diagnóstico , Ciliopatias/genética , Algoritmos
3.
Traffic ; 25(1): e12929, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272449

RESUMO

Ciliary transport in eukaryotic cells is an intricate and conserved process involving the coordinated assembly and functioning of a multiprotein intraflagellar transport (IFT) complex. Among the various IFT proteins, intraflagellar transport 52 (IFT52) plays a crucial role in ciliary transport and is implicated in various ciliopathies. IFT52 is a core component of the IFT-B complex that facilitates movement of cargoes along the ciliary axoneme. Stable binding of the IFT-B1 and IFT-B2 subcomplexes by IFT52 in the IFT-B complex regulates recycling of ciliary components and maintenance of ciliary functions such as signal transduction and molecular movement. Mutations in the IFT52 gene can disrupt ciliary trafficking, resulting in dysfunctional cilia and affecting cellular processes in ciliopathies. Such ciliopathies caused by IFT52 mutations exhibit a wide range of clinical features, including skeletal developmental abnormalities, retinal degeneration, respiratory failure and neurological abnormalities in affected individuals. Therefore, IFT52 serves as a promising biomarker for the diagnosis of various ciliopathies, including short-rib thoracic dysplasia 16 with or without polydactyly. Here, we provide an overview of the IFT52-mediated molecular mechanisms underlying ciliary transport and describe the IFT52 mutations that cause different disorders associated with cilia dysfunction.


Assuntos
Cílios , Ciliopatias , Humanos , Transporte Biológico , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Mutação , Transporte Proteico , Proteínas/metabolismo , Transdução de Sinais
4.
Eur J Endocrinol ; 190(2): 151-164, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245004

RESUMO

OBJECTIVE: SOFT syndrome (MIM#614813), denoting Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis, is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A, encoding a centriolar protein. SOFT syndrome, characterized by severe growth failure of prenatal onset and dysmorphic features, was recently associated with insulin resistance. This study aims to further explore its endocrinological features and pathophysiological mechanisms. DESIGN/METHODS: We present clinical, biochemical, and genetic features of 2 unrelated patients carrying biallelic pathogenic POC1A variants. Cellular models of the disease were generated using patients' fibroblasts and POC1A-deleted human adipose stem cells. RESULTS: Both patients present with clinical features of SOFT syndrome, along with hyperinsulinemia, diabetes or glucose intolerance, hypertriglyceridemia, liver steatosis, and central fat distribution. They also display resistance to the effects of IGF-1. Cellular studies show that the lack of POC1A protein expression impairs ciliogenesis and adipocyte differentiation, induces cellular senescence, and leads to resistance to insulin and IGF-1. An altered subcellular localization of insulin receptors and, to a lesser extent, IGF1 receptors could also contribute to resistance to insulin and IGF1. CONCLUSIONS: Severe growth retardation, IGF-1 resistance, and centripetal fat repartition associated with insulin resistance-related metabolic abnormalities should be considered as typical features of SOFT syndrome caused by biallelic POC1A null variants. Adipocyte dysfunction and cellular senescence likely contribute to the metabolic consequences of POC1A deficiency. SOFT syndrome should be included within the group of monogenic ciliopathies with metabolic and adipose tissue involvement, which already encompasses Bardet-Biedl and Alström syndromes.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Resistência à Insulina , Insulinas , Humanos , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Fator de Crescimento Insulin-Like I , Resistência à Insulina/genética , Ciliopatias/genética , Anormalidades Múltiplas/genética
5.
Nat Commun ; 15(1): 365, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191484

RESUMO

WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.


Assuntos
Ciliopatias , Genes Ligados ao Cromossomo X , Repetições WD40 , Animais , Humanos , Masculino , Encéfalo , Ciliopatias/genética , Cognição , Peixe-Zebra/genética
6.
Clin Genet ; 105(1): 87-91, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619988

RESUMO

Skeletal ciliopathies are a heterogenous group of congenital disorders characterized by multiple internal abnormalities, and distinct radiographic presentation. Pathogenic variants in at least 30 cilia genes are known to cause skeletal ciliopathies. Here we report a fetus with an atypical skeletal ciliopathy phenotype and compound heterozygous variants in the RAB34 gene. The affected fetus had multiple malformations, including posterior neck edema, micrognathia, low-set and small ears, auricular hypoplasia, cleft lip and palate, short extremities, and a combination of rarely occurring pre- and postaxial polydactyly. Genome sequencing identified compound heterozygous variants in the RAB34 gene: maternal c.254T>C, p.(Ile85Thr), and paternal c.691C>T, p.(Arg231*) variants. Only the paternal variant was present in the unaffected sibling. Evidence in the literature indicated that Rab34-/- mice displayed a ciliopathy phenotype with cleft palate and polydactyly. These features were consistent with malformations detected in our patient supporting the pathogenicity of the identified RAB34 variants. Overall, this case report further expands genetic landscape of human ciliopathy syndromes and suggests RAB34 as a candidate gene for skeletal ciliopathies.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Fenda Labial , Fissura Palatina , Polidactilia , Humanos , Animais , Camundongos , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/genética , Ciliopatias/diagnóstico por imagem , Ciliopatias/genética , Ciliopatias/patologia , Polidactilia/genética , Anormalidades Múltiplas/genética , Síndrome , Proteínas rab de Ligação ao GTP/genética
7.
Curr Top Dev Biol ; 155: 127-163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38043950

RESUMO

Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.


Assuntos
Ciliopatias , Retina , Humanos , Retina/metabolismo , Ciliopatias/genética , Ciliopatias/terapia , Ciliopatias/metabolismo , Mutação , Cílios/metabolismo , Células-Tronco/metabolismo
8.
BMC Med Genomics ; 16(1): 318, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062428

RESUMO

BACKGROUND: Short-rib polydactyly syndrome (SRPS) refers to a group of lethal skeletal dysplasias that can be difficult to differentiate between subtypes or from other non-lethal skeletal dysplasias such as Ellis-van Creveld syndrome and Jeune syndrome in a prenatal setting. We report the ultrasound and genetic findings of four unrelated fetuses with skeletal dysplasias. METHODS: Systemic prenatal ultrasound examination was performed in the second or third trimester. Genetic tests including GTG-banding, single nucleotide polymorphism (SNP) array and exome sequencing were performed with amniocytes or aborted fetal tissues. RESULTS: The major and common ultrasound anomalies for the four unrelated fetuses included short long bones of the limbs and narrow thorax. No chromosomal abnormalities and pathogenic copy number variations were detected. Exome sequencing revealed three novel variants in the DYNC2H1 gene, namely NM_001080463.2:c.6809G > A p.(Arg2270Gln), NM_001080463.2:3133C > T p.(Gln1045Ter), and NM_001080463.2:c.337C > T p.(Arg113Trp); one novel variant in the IFT172 gene, NM_015662.3:4540-5 T > A; and one novel variant in the WDR19 gene, NM_025132.4:c.2596G > C p.(Gly866Arg). The genotypes of DYNC2H1, IFT172 and WDR19 and the phenotypes of the fetuses give hints for the diagnosis of short-rib thoracic dysplasia (SRTD) with or without polydactyly 3, 10, and 5, respectively. CONCLUSION: Our findings expand the mutation spectrum of DYNC2H1, IFT172 and WDR19 associated with skeletal ciliopathies, and provide useful information for prenatal diagnosis and genetic counseling on rare skeletal disorders.


Assuntos
Ciliopatias , Síndrome de Ellis-Van Creveld , Osteocondrodisplasias , Polidactilia , Gravidez , Feminino , Humanos , Variações do Número de Cópias de DNA , Síndrome de Ellis-Van Creveld/diagnóstico por imagem , Síndrome de Ellis-Van Creveld/genética , Diagnóstico Pré-Natal , Ciliopatias/diagnóstico por imagem , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
9.
J Cell Sci ; 136(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095645

RESUMO

The primary cilium is a conserved microtubule-based organelle that is critical for transducing developmental, sensory and homeostatic signaling pathways. It comprises an axoneme with nine parallel doublet microtubules extending from the basal body, surrounded by the ciliary membrane. The axoneme exhibits remarkable stability, serving as the skeleton of the cilium in order to maintain its shape and provide tracks to ciliary trafficking complexes. Although ciliary trafficking and signaling have been exhaustively characterized over the years, less is known about the unique structural and functional complexities of the axoneme. Recent work has yielded new insights into the mechanisms by which the axoneme is built with its proper length and architecture, particularly regarding the activity of microtubule-associated proteins (MAPs). In this Review, we first summarize current knowledge about the architecture, composition and specialized compartments of the primary cilium. Next, we discuss the mechanistic underpinnings of how a functional cilium is assembled, maintained and disassembled through the regulation of its axonemal microtubules. We conclude by examining the diverse localizations and functions of ciliary MAPs for the pathobiology of ciliary diseases.


Assuntos
Cílios , Ciliopatias , Humanos , Cílios/metabolismo , Microtúbulos/metabolismo , Axonema/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
10.
PLoS Biol ; 21(12): e3002425, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079449

RESUMO

Ciliopathies are associated with wide spectrum of structural birth defects (SBDs), indicating important roles for cilia in development. Here, we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in Ift140, an intraflagellar transport (IFT) protein regulating ciliogenesis. Ift140-deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula (TEF), randomized heart looping, congenital heart defects (CHDs), lung hypoplasia, renal anomalies, and polydactyly. Tamoxifen inducible CAGGCre-ER deletion of a floxed Ift140 allele between E5.5 to 9.5 revealed early requirement for Ift140 in left-right heart looping regulation, mid to late requirement for cardiac outflow septation and alignment, and late requirement for craniofacial development and body wall closure. Surprisingly, CHD were not observed with 4 Cre drivers targeting different lineages essential for heart development, but craniofacial defects and omphalocele were observed with Wnt1-Cre targeting neural crest and Tbx18-Cre targeting epicardial lineage and rostral sclerotome through which trunk neural crest cells migrate. These findings revealed cell autonomous role of cilia in cranial/trunk neural crest-mediated craniofacial and body wall closure defects, while non-cell autonomous multi-lineage interactions underlie CHD pathogenesis, revealing unexpected developmental complexity for CHD associated with ciliopathies.


Assuntos
Ciliopatias , Cardiopatias Congênitas , Animais , Camundongos , Cílios/metabolismo , Cardiopatias Congênitas/genética , Desenvolvimento Embrionário , Proteínas de Transporte/metabolismo , Crânio , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia
11.
J Cell Mol Med ; 27(24): 3974-3979, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37830491

RESUMO

More and more attention is paid to diseases such as internal transfer and brain malformation which are caused by the abnormal morphogenesis of cilia. These cilia-related diseases are divided into two categories: ciliopathy resulting from defects of primary cilia and primary ciliary dyskinesia (PCD) caused by functional dysregulation of motile cilia. Cilia are widely distributed, and their related diseases can cover many human organs and tissues. Recent studies prove that primary cilia play a key role in maintaining homeostasis in the cardiovascular system. However, molecular mechanisms of cilia-related diseases remain elusive. Here, we reviewed recent research progresses on characteristics, molecular mechanisms and treatment methods of ciliopathy and PCD. Our review is beneficial to the further research on the pathogenesis and treatment strategies of cilia-related diseases.


Assuntos
Transtornos da Motilidade Ciliar , Ciliopatias , Humanos , Cílios/patologia , Transtornos da Motilidade Ciliar/genética , Ciliopatias/genética , Ciliopatias/patologia , Mutação
12.
Genes (Basel) ; 14(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37628605

RESUMO

Here we present a patient with a cranioectodermal phenotype associated with pathogenic variants in the IFT140 gene. Most frequently, pathogenic variants in IFT140 correspond to the phenotype of Mainzer-Saldino syndrome. Only four patients have previously been described with this cranioectodermal phenotype and variants in IFT140. In comparison to other IFT140-cranioectodermal patients, our proband had similar skeletal features among with early onset end-stage renal failure that required kidney transplantation but did not have common ophthalmological features such as retinopathy, optic nerve atrophy, or nystagmus. Following exome sequencing, a splicing variant and exons 27-30 tandem duplication were suspected and further validated. The two other patients with Mainzer-Saldino syndrome that we described displayed a typical clinical picture but a special diagnostic journey. In both cases, at first only one pathogenic variant was detected following panel or exome NGS sequencing. Further WGS was performed for one of them where tandem duplication was found. Screening the third patient for the same tandem duplication was successful and revealed the presence of this duplication. Thus, we suggest that the description of the clinical feature polymorphism in a rare IFT140-cranioectodermal phenotype is extremely important for providing genetic counseling for families, as well as the formation of the correct diagnostic path for patients with a variant in IFT140.


Assuntos
Ciliopatias , Craniossinostoses , Humanos , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Ciliopatias/diagnóstico , Ciliopatias/genética , Fenótipo , Proteínas de Transporte
13.
Database (Oxford) ; 20232023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37542408

RESUMO

Cilia are found in eukaryotic species ranging from single-celled organisms, such as Chlamydomonas reinhardtii, to humans, but not in plants. The ability to respond to repellents and/or attractants, regulate cell proliferation and differentiation and provide cellular mobility are just a few examples of how crucial cilia are to cells and organisms. Over 30 distinct rare disorders generally known as ciliopathy are caused by abnormalities or functional impairments in cilia and cilia-related compartments. Because of the complexity of ciliopathies and the rising number of ciliopathies and ciliopathy genes, a ciliopathy-oriented and up-to-date database is required. Here, we present CiliaMiner, a manually curated ciliopathy database that includes ciliopathy lists collected from articles and databases. Analysis reveals that there are 55 distinct disorders likely related to ciliopathy, with over 4000 clinical manifestations. Based on comparative symptom analysis and subcellular localization data, diseases are classified as primary, secondary or atypical ciliopathies. CiliaMiner provides easy access to all of these diseases and disease genes, as well as clinical features and gene-specific clinical features, as well as subcellular localization of each protein. Additionally, the orthologs of disease genes are also provided for mice, zebrafish, Xenopus, Drosophila, Caenorhabditis elegans and Chlamydomonas reinhardtii. CiliaMiner (https://kaplanlab.shinyapps.io/ciliaminer) aims to serve the cilia community with its comprehensive content and highly enriched interactive heatmaps, and will be continually updated. Database URL: https://kaplanlab.shinyapps.io/ciliaminer/.


Assuntos
Ciliopatias , Peixe-Zebra , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Ciliopatias/genética , Ciliopatias/metabolismo , Eucariotos , Cílios/genética , Cílios/metabolismo , Cílios/ultraestrutura
14.
Hum Mol Genet ; 32(21): 3090-3104, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37555648

RESUMO

Ciliopathies are inherited disorders caused by defective cilia. Mutations affecting motile cilia usually cause the chronic muco-obstructive sinopulmonary disease primary ciliary dyskinesia (PCD) and are associated with laterality defects, while a broad spectrum of early developmental as well as degenerative syndromes arise from mutations affecting signalling of primary (non-motile) cilia. Cilia assembly and functioning requires intraflagellar transport (IFT) of cargos assisted by IFT-B and IFT-A adaptor complexes. Within IFT-B, the N-termini of partner proteins IFT74 and IFT81 govern tubulin transport to build the ciliary microtubular cytoskeleton. We detected a homozygous 3-kb intragenic IFT74 deletion removing the exon 2 initiation codon and 40 N-terminal amino acids in two affected siblings. Both had clinical features of PCD with bronchiectasis, but no laterality defects. They also had retinal dysplasia and abnormal bone growth, with a narrowed thorax and short ribs, shortened long bones and digits, and abnormal skull shape. This resembles short-rib thoracic dysplasia, a skeletal ciliopathy previously linked to IFT defects in primary cilia, not motile cilia. Ciliated nasal epithelial cells collected from affected individuals had reduced numbers of shortened motile cilia with disarranged microtubules, some misorientation of the basal feet, and disrupted cilia structural and IFT protein distributions. No full-length IFT74 was expressed, only truncated forms that were consistent with N-terminal deletion and inframe translation from downstream initiation codons. In affinity purification mass spectrometry, exon 2-deleted IFT74 initiated from the nearest inframe downstream methionine 41 still interacts as part of the IFT-B complex, but only with reduced interaction levels and not with all its usual IFT-B partners. We propose that this is a hypomorphic mutation with some residual protein function retained, which gives rise to a primary skeletal ciliopathy combined with defective motile cilia and PCD.


Assuntos
Cílios , Ciliopatias , Humanos , Transporte Biológico , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Proteínas/genética , Síndrome , Mutação , Tórax/metabolismo , Flagelos/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
15.
Hum Mol Genet ; 32(19): 2887-2900, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37427975

RESUMO

Owing to their crucial roles in development and homeostasis, defects in cilia cause ciliopathies with diverse clinical manifestations. The intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes, mediates not only the intraciliary bidirectional trafficking but also import and export of ciliary proteins together with the kinesin-2 and dynein-2 motor complexes. The BBSome, containing eight subunits encoded by causative genes of Bardet-Biedl syndrome (BBS), connects the IFT machinery to ciliary membrane proteins to mediate their export from cilia. Although mutations in subunits of the IFT-A and dynein-2 complexes cause skeletal ciliopathies, mutations in some IFT-B subunits are also known to cause skeletal ciliopathies. We here show that compound heterozygous variations of an IFT-B subunit, IFT81, found in a patient with skeletal ciliopathy cause defects in its interactions with other IFT-B subunits, and in ciliogenesis and ciliary protein trafficking when one of the two variants was expressed in IFT81-knockout (KO) cells. Notably, we found that IFT81-KO cells expressing IFT81(Δ490-519), which lacks the binding site for the IFT25-IFT27 dimer, causes ciliary defects reminiscent of those found in BBS cells and those in IFT74-KO cells expressing a BBS variant of IFT74, which forms a heterodimer with IFT81. In addition, IFT81-KO cells expressing IFT81(Δ490-519) in combination with the other variant, IFT81 (L645*), which mimics the cellular conditions of the above skeletal ciliopathy patient, demonstrated essentially the same phenotype as those expressing only IFT81(Δ490-519). Thus, our data indicate that BBS-like defects can be caused by skeletal ciliopathy variants of IFT81.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Humanos , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Dineínas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas Musculares/metabolismo , Proteínas/metabolismo
16.
Elife ; 122023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466224

RESUMO

The BBSome is an octameric protein complex that regulates ciliary transport and signaling. Mutations in BBSome subunits are closely associated with ciliary defects and lead to ciliopathies, notably Bardet-Biedl syndrome. Over the past few years, there has been significant progress in elucidating the molecular organization and functions of the BBSome complex. An improved understanding of BBSome-mediated biological events and molecular mechanisms is expected to help advance the development of diagnostic and therapeutic approaches for BBSome-related diseases. Here, we review the current literature on the structural assembly, transport regulation, and molecular functions of the BBSome, emphasizing its roles in cilium-related processes. We also provide perspectives on the pathological role of the BBSome in ciliopathies as well as how these can be exploited for therapeutic benefit.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Humanos , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo
17.
Nucleic Acids Res ; 51(13): 6684-6701, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37326025

RESUMO

Defects in cilia genes, which are critical for cilia formation and function, can cause complicated ciliopathy syndromes involving multiple organs and tissues; however, the underlying regulatory mechanisms of the networks of cilia genes in ciliopathies remain enigmatic. Herein, we have uncovered the genome-wide redistribution of accessible chromatin regions and extensive alterations of expression of cilia genes during Ellis-van Creveld syndrome (EVC) ciliopathy pathogenesis. Mechanistically, the distinct EVC ciliopathy-activated accessible regions (CAAs) are shown to positively regulate robust changes in flanking cilia genes, which are a key requirement for cilia transcription in response to developmental signals. Moreover, a single transcription factor, ETS1, can be recruited to CAAs, leading to prominent chromatin accessibility reconstruction in EVC ciliopathy patients. In zebrafish, the collapse of CAAs driven by ets1 suppression subsequently causes defective cilia proteins, resulting in body curvature and pericardial oedema. Our results depict a dynamic landscape of chromatin accessibility in EVC ciliopathy patients, and uncover an insightful role for ETS1 in controlling the global transcriptional program of cilia genes by reprogramming the widespread chromatin state.


Assuntos
Cílios , Proteína Proto-Oncogênica c-ets-1 , Proteínas de Peixe-Zebra , Animais , Cromatina/genética , Cromatina/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/patologia , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas de Peixe-Zebra/metabolismo
18.
Cells ; 12(12)2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371046

RESUMO

The photoreceptor outer segment is a highly specialized primary cilium that is essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290, there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290-related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids by modulating the expression of rhodopsin and by targeting cilia and synaptic plasticity pathways. This work sheds light on the mechanism of action of eupatilin and supports its potential as a variant-independent approach for CEP290-associated ciliopathies.


Assuntos
Cílios , Ciliopatias , Humanos , Cílios/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Rodopsina/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Flavonoides , Ciliopatias/tratamento farmacológico , Ciliopatias/genética , Ciliopatias/metabolismo
19.
Methods Cell Biol ; 176: 139-158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164535

RESUMO

Ciliopathies comprise a group of inherited diseases caused by mutations in genes encoding proteins that localize to cilia or centrosomes. They afflict multiple organs and are one of the most frequent monogenic causes of kidney failure in adults, adolescents and children. Primary cilia play diverse roles in cell signaling, cell cycle regulation, planar cell polarity and mechanosensing. The use of patient-derived cells possessing endogenous disease causing mutations enables the study of these processes and their dysregulation in disease. Here we describe methods to cultivate patient-derived dermal fibroblast and renal epithelial cells isolated from urine. Fibroblasts are highly robust, long-lived, and easy to culture cells in which ciliary assembly can be easily induced. Similarly, the ability to acquire and culture ciliated renal epithelial cells without patient-invasive-intervention holds great potential to further our understanding of ciliopathies. In addition to monolayer cultures, we also detail the formation of three-dimensional renal-epithelial organoids-so-called tubuloids-that demonstrate epithelial-polarization and transepithelial transport activities like those seen in vivo renal-tubules. These in vitro models are powerful tools to investigate the underlying disease mechanisms of human ciliopathies that can be employed without the need for heavy-handed genetic or molecular manipulations.


Assuntos
Ciliopatias , Rim , Criança , Adulto , Humanos , Adolescente , Rim/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Cílios/genética , Cílios/metabolismo , Proteínas , Túbulos Renais
20.
Kidney Int ; 104(2): 378-387, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230223

RESUMO

Nephronophthisis (NPH) is an autosomal-recessive ciliopathy representing one of the most frequent causes of kidney failure in childhood characterized by a broad clinical and genetic heterogeneity. Applied to one of the worldwide largest cohorts of patients with NPH, genetic analysis encompassing targeted and whole exome sequencing identified disease-causing variants in 600 patients from 496 families with a detection rate of 71%. Of 788 pathogenic variants, 40 known ciliopathy genes were identified. However, the majority of patients (53%) bore biallelic pathogenic variants in NPHP1. NPH-causing gene alterations affected all ciliary modules defined by structural and/or functional subdomains. Seventy six percent of these patients had progressed to kidney failure, of which 18% had an infantile form (under five years) and harbored variants affecting the Inversin compartment or intraflagellar transport complex A. Forty eight percent of patients showed a juvenile (5-15 years) and 34% a late-onset disease (over 15 years), the latter mostly carrying variants belonging to the Transition Zone module. Furthermore, while more than 85% of patients with an infantile form presented with extra-kidney manifestations, it only concerned half of juvenile and late onset cases. Eye involvement represented a predominant feature, followed by cerebellar hypoplasia and other brain abnormalities, liver and skeletal defects. The phenotypic variability was in a large part associated with mutation types, genes and corresponding ciliary modules with hypomorphic variants in ciliary genes playing a role in early steps of ciliogenesis associated with juvenile-to-late onset NPH forms. Thus, our data confirm a considerable proportion of late-onset NPH suggesting an underdiagnosis in adult chronic kidney disease.


Assuntos
Ciliopatias , Doenças Renais Císticas , Falência Renal Crônica , Doenças Renais Policísticas , Adulto , Humanos , Falência Renal Crônica/diagnóstico , Doenças Renais Policísticas/complicações , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Mutação , Ciliopatias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...